

PRINCIPLED WATER MANAGEMENT CONCEPT OF 2000 - overview

Gašper Zupančič Slovenian Water Agency

Principled Water Management Concept

- The Principled Water management concept for border Mura of 2000 (PWMC) is a crucial water management document!
- Is a result of long going cross border cooperation
- Presents the basis for "Border Mura 2030" plan to be developed in goMURra project
- Within goMURra an evaluation of PWMC has been prepared as a first step in preparing the "Border Mura 2030" plan

PWMC structure

- Three fields of work and numerous thematic areas (t.a.):
- Water management:
 - t.a. 1.1 floods
 - t.a. 1.2 changes in riverbed
 - t.a. 1.3 sediment transport basis
 - t.a. 1.4 river morphology
 - t.a. 1.5 water engineering structures
 - t.a. 1.6 sediment transport model
 - t.a. 1.7 low water analysis

- River ecology:
 - t.a. 2.1 ichthyological assessment
 - t.a. 2.2 HM Structures
 - t.a. 2.3 macrozoobenthos
- Vision:
 - t.a. 1.18 vision: water management aspect
 - t.a. 2.18 vision: ecological aspect
 - t.a. 0.18 vision discussion

THE FUTURE OF BORDER BORDER MURA BILATERAL CONFERENCE Radenci, Slovenia 8. - 9. May 2019

Result: 17 volumes with over 1200 pages and ~ 60 maps

Water Management

- t.a. 1.1 floods
- t.a. 1.2 changes in riverbed
- t.a. 1.3 sediment transport basis
- t.a. 1.4 river morphology
- t.a. 1.5 water engineering structures
- t.a. 1.6 sediment transport model
- t.a. 1.7 low water analysis

Them. area 1.1 – floods

- Purpose: analysis of flood hazard and support other thematic areas.
- Methodology:
 - 1-D flow model (HEC RAS) with 351 computational sections (between Ceršak dam and bridge in Petanjci)
 - Model calibrated on measurements at 360, 1000 and 1108 m³/s
- Results:
 - Flow results for Q30 (1490 m³/s) and Q100 (1800 m³/s)
 - Flood maps
- Comments:
 - 1D analysis outdated by today's standards for analysing flow such as river Mura
 - Authors commented on lack of measurements for calibration

Them. area 1.2 – changes in riverbed

- Purpose: show riverbed changes and areas of gravel deposits (areas suitable for widenings).
- Methodology:
 - Riverbed analysis based on regular measurements of 14 cross sections in the period 1971 2000
 - Analysis of erosion areas based on 79 gravel extractions (only in Austria)
- Results:
 - Riverbed analysis:
 - riverbed deepening on average ~ 50 cm
 - annual gravel outflow of 29.000 m3
 - Spatial and temporal representation od riverbed dynamics
 - Erosion areas:
 - Maps of gravel deposits and depth of tertiary layer (only in Austria) best locations at Dietzendörfl and Gassdorf
- Comments:
 - More accurate assessment of riverbed changes possible with modern technology (terrain model)
 - Gravel deposits assessed only for the Austrian side

Them. area 1.3 – sediment transport basis

- Purpose: to prepare information for establishing a sediment model in t.a. 1.6.
- Methodology:
 - Analysed 30 linear and volumetric samples of river sediments
 - Assessment of drag forces based on 20 flow measurements
- Results:
 - Sediment samples indicate long duration of riverbed deepening (before regular measurements of cross sections since 1970)
 - Input data for the sediment model: sediment composition, drag forces (both from measurements and modelling done in t.a. 1.1.), calculated start of sediment transport.

Them. area 1.4 – river morphology

- Purpose: to assess the state regarding hydromorphology and propose measures.
- Methodology:
 - Comparison of current state and state before regulation works in late 19th century
- Results:
 - 19th century Mura was a braided river and in dynamically stable state (regarding changes in riverbed)
 - Current state assessed for 5 sectors of the border Mura
 - Comparison shows reduced river dynamics, especially in sectors 3 (G. Radgona Petanjci) and 5 (Mureck – G. Radgona).
 - Sectors 3 and 5 are areas where measures for increasing river dynamics are most suitable
- Comments:
 - A very comprehensive analysis with room for modernisation (e.g. DPSIR approach)

Them. area 1.5 – water engineering structures

- Purpose: overview of current state of water engineering structures, evaluation of different variants of measures, and define (general) measures locations
- Methodology:
 - variants of measures evaluated based on 13 indicators (most qualitative) for reaching 4 goals
- Results:
 - A description of history of regulation works with description of structures
 - Evaluation of 6 possible variants of measures best proposed solution: river widenings to approx. 200 m
 - Separate analysis of measure locations (one for Austria, one for Slovenia)
- Comments:
 - Results of evaluation of variants prone to subjective results (many qualitative indicators)
 - Different analyses of measure locations (due to lack of geology knowledge on Slovene side). Room for improvement regarding land ownership, and contributions to other goals (e.g. Natura 2000 goals).

Them. area 1.6 – sediment transport model

- Purpose: propose measures for long term riverbed stabilisation
- Methodology:
 - Model MORMO: sediment data (t.a. 1.3), hydrological data (Mureck), cross sections (from 1998), and calibration data (t.a. 1.2)
 - Analysis period 60 years (105 years) from 1995 onward
- Results:
 - Analysis of several variants with a well calibrated model shows:
 - Stabilisation can be reached with annual input of 13.600 m³ of gravel (20 lorries per week)
 - Best solution proposed: river widenings (included 2.500 m³ gravel inflow on upstream border per year)
- Comments:
 - Possible improvements regarding: hydrological prognosis (climate change), better side erosion model, improve knowledge on geology (Slovene side and depth of tertiary layers), measurements of gravel flow at Ceršak.

Them. area 1.6 – sediment transport model

- Proposed best solution to stabilise river bed for 60 years:
 - gravel input at Ceršak (2.500 m³ per annum)
 - 4 widenings at different times:
 - Widening A (km 114,8-115,8) to 150 m in years 0-15,
 - Widening C1 (km 109,1-112,6) to 146 m in years 15-30,
 - Widening B (km 106,1-109,1) to 144 m in years 30-45 and
 - Widening C2 (km 102,7-106,1) to 150 m in years 45-60
 - Activation of certain smaller gravel hotspots (D1 in km 122,7-128,5 and D2 in km 118,8-122,3).
- For long term stabilisation in Radgona/Radkersburg (proposed bed enhancement – measure E in km 97-102,7) not needed until year 105 (2100).

Them. area 1.7 – low water analysis

- Purpose: analysis of low waters and computation of low water levels
- Methodology:
 - Analysis of low water levels with data from 4 water gauge stations
 - Computation of low water levels using the numerical model from t.a. 1.1
- Results:
 - Calculations of water levels for three low water discharges (64 m³/s, 58 m³/s and 40,5 m³/s)
 - Measurements are not fully consistent between gauging stations (notable differences)
 - Comparison of daily average low waters and daily minimum low waters indicates daily changes in water levels (operation of upstream dams?)
- Comments:
 - Reasons for differences between water gauging stations are not well understood.

River Ecology

- t.a. 2.1 ichthyological assessment
- t.a. 2.2 HM Structures
- t.a. 2.3 macrozoobenthos

Them. area 2.1 – ichthyological assessment

- Purpose: to assess and evaluate state of fish biota
- Methodology:
 - Reference state was defined as state of Mura before regulations in late 19. century. Reference state was assessed based on historical and previous research.
 - Actual state was assessed based on previous research and sampling (electric fishing)
- Results:
 - Historical state: 52 fish species covering all 16 ecological groups
 - Current state: 54 fish species (also non indigenous) covering 14 groups, but several populations degraded (low number of individuals, low biomass).
 - Changes in populations are consistent with HM degradation of river sectors (t.a. 2.2)
 - To improve status it is crucial to establish high variety of water environments.
- Comments:
 - Proposed enhancement of the analysis.

Them. area 2.2 – HM Structures

- Purpose: analyse HM, structural specifics and connectivity (for t.a. 2.1), and analysis
 of riparian vegetation.
- Methodology:
 - HM assessment based on mapping structures per sections of border Mura: 14 types of structures mapped on 3 out of 6 sections
- Results:
 - Assessment of 3 sections shows different attractiveness for fish biota,
 - Assessment of riparian vegetation shows main habitat types that are under stress. Proposals for improvements include: rising underground water level, inducing river dynamics, improving water quality, reduce non indigenous plants and improve forestry and agricultural practices.
 - Analysis of connectivity shows high downstream connectivity, and very limited lateral connectivity
- Comments:
 - HM analysis only covered 3 out of 6 sections, knowledge of riparian vegetation is very limited.

Them. area 2.3 – macrozoobenthos

- Purpose: offer insight into state of macrozoobenthos
- Methodology:
 - Based on literature and mainly on sampling according to module 1 of current Austrian guidelines (level of analysis: orientative saprobiological survey)
- Results:
 - Identified 109 taxa (dominant filtrators and grazers)
 - Saprobiological level II-III (alpha mezosaprobial beta mezosaprobial)
 - Despite evident pressures, the macrozoobenthos cinosis shows big potential for revitalising Mura and tributaries proposed increase in river dynamics
- Comments:
 - Study offers only a very limited insight. More surveys on higher level of analysis proposed.

Vision

- t.a. 1.18 vision: water management aspect
- t.a. 2.18 vision: ecological aspect
- t.a. 0.18 vision discussion

Them. area 1.18 – vision: water Management aspect Purpose: prepare a vision for border Mura and propose measures.

- Methodology: •
 - The vision was developed by forming the "ideal vision", analysing key deficits and proposing an "operational vision".
- Results:
 - The ideological vision was defined as the state of Mura before anthropogenic pressures (source: 3rd military survey map), and was described for 5 sections of the border Mura (5 parameters)
 - Two deficits were defined: HM (reduction of width, reduction of side channels, increased radius...) and water management (bed instability, effects to infrastructure...)
 - Operational vision was proposed as: increasing width to 200 250 m (where possible) as a starting point. As a permanent solution the following is proposed: offer even more space to river dynamics (sediment and habitats) and secure upstream gravel inflow.
 - Operational vision was spatially represented by description of measures to be undertaken on 5 sections (sections A, B, C, D) and E).
- Comments:
 - A phase II PWMC is proposed (before executing measures) that would answer questions regarding land ownership, more cohesion between WM and habitat goals, inclusion of ground water, confluents, and monitoring of a pilot measure. The proposed measures are securing 60 years stability. In this time upstream inflow of gravel should be secured.

Them. area 2.18 – vision: ecological aspect

- Purpose: prepare a vision for border Mura and propose measures.
- Methodology:
 - The vision was developed by forming the "ideal vision", analysing key deficits and proposing an "operational vision".
- Results:
 - The ideal vision was based on descriptions of the 19th. century Mura. This means a very dynamic ecosystem with high diversity (52 fish species covering all 16 ecological groups).
 - Two types of deficits were defined: fish ecology deficits (deficits for 15 ecological groups) and river system deficits. Both show a lack of living area diversity.
 - Proposed measures for improving state tackle this lack of diversity: (shallow, deep water, with low and fast flows, connected and unconnected side arms, connection with tributaries...). The proposed widenings are seen as a step towards the ecological vision, but not sufficient.
- Comments:
 - Improve knowledge (especially for macrozoobenthos).

Them. area 0.18 – vision discussion

- Purpose: to form a common transboundary operational vision (vision discussion) of the border Mura.
- Methodology:
 - Two sectoral visions and 4 workshops as a basis for forming a common approach to reaching main goals:
 - reduce bed erosion,
 - reduce flood risk and
 - enable a dynamic river system.
- Results:
 - Description of WM measures for 5 sections of border Mura (A, B, C1, C2, D1, D2 and E) and ecological approach for the whole border Mura.
- Comments:
 - Knowledge lacks; vision not very operational (need for phase II). Only two sectoral views acknowledged addressing three goals (not including problems such as: groundwater connections, water balance, water needs, not including sidearm and tributaries).
 - ,New' important concepts to consider: climate change adaptation (and others)

Conclusions

- PWMC is a comprehensive source of knowledge and inspiration
- It covered a broad field of work to develop a long-term strategy for border Mura and proposed measures
- After 18 years it is time to rethink this
- To prepare a new (upgraded) plan for the future

THANK YOU!

Gašper Zupančič, Slovenian Water Agency, gasper.zupancic@gov.si

REPUBLIKA SLOVENIJA MINISTRSTVO ZA OKOLJE IN PROSTOR DIREKCIJA REPUBLIKE SLOVENIJE ZA VODE

